Notation used in Ruby API documentation
Module: lay
Description: Support for various debugger features
This class implements some features that allow customization of the debugger behavior, specifically the generation of back traces and the handling of exception. These functions are particular useful for implementing DSL interpreters and providing proper error locations in the back traces or to suppress exceptions when re-raising them.
new MacroExecutionContext ptr | new | Creates a new object of this class |
[const] | MacroExecutionContext ptr | _const_cast | Returns a non-const reference to self. | |
void | _create | Ensures the C++ object is created | ||
void | _destroy | Explicitly destroys the object | ||
[const] | bool | _destroyed? | Returns a value indicating whether the object was already destroyed | |
[const] | bool | _is_const_object? | Returns a value indicating whether the reference is a const reference | |
void | _manage | Marks the object as managed by the script side. | ||
void | _unmanage | Marks the object as no longer owned by the script side. | ||
void | assign | (const MacroExecutionContext other) | Assigns another object to self | |
[const] | new MacroExecutionContext ptr | dup | Creates a copy of self |
void | ignore_next_exception | Ignores the next exception in the debugger | ||
void | remove_debugger_scope | Removes a debugger scope previously set with set_debugger_scope | ||
void | set_debugger_scope | (string filename) | Sets a debugger scope (file level which shall appear in the debugger) |
void | create | Use of this method is deprecated. Use _create instead | ||
void | destroy | Use of this method is deprecated. Use _destroy instead | ||
[const] | bool | destroyed? | Use of this method is deprecated. Use _destroyed? instead | |
[const] | bool | is_const_object? | Use of this method is deprecated. Use _is_const_object? instead |
_const_cast | Signature: [const] MacroExecutionContext ptr _const_cast Description: Returns a non-const reference to self. Basically, this method allows turning a const object reference to a non-const one. This method is provided as last resort to remove the constness from an object. Usually there is a good reason for a const object reference, so using this method may have undesired side effects. This method has been introduced in version 0.29.6. |
_create | Signature: void _create Description: Ensures the C++ object is created Use this method to ensure the C++ object is created, for example to ensure that resources are allocated. Usually C++ objects are created on demand and not necessarily when the script object is created. |
_destroy | Signature: void _destroy Description: Explicitly destroys the object Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access to this object will throw an exception. If the object is not owned by the script, this method will do nothing. |
_destroyed? | Signature: [const] bool _destroyed? Description: Returns a value indicating whether the object was already destroyed This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter may happen, if the object is owned by a C++ object which got destroyed itself. |
_is_const_object? | Signature: [const] bool _is_const_object? Description: Returns a value indicating whether the reference is a const reference This method returns true, if self is a const reference. In that case, only const methods may be called on self. |
_manage | Signature: void _manage Description: Marks the object as managed by the script side. After calling this method on an object, the script side will be responsible for the management of the object. This method may be called if an object is returned from a C++ function and the object is known not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's reference is no longer required. Usually it's not required to call this method. It has been introduced in version 0.24. |
_unmanage | Signature: void _unmanage Description: Marks the object as no longer owned by the script side. Calling this method will make this object no longer owned by the script's memory management. Instead, the object must be managed in some other way. Usually this method may be called if it is known that some C++ object holds and manages this object. Technically speaking, this method will turn the script's reference into a weak reference. After the script engine decides to delete the reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will occur. Usually it's not required to call this method. It has been introduced in version 0.24. |
assign | Signature: void assign (const MacroExecutionContext other) Description: Assigns another object to self |
create | Signature: void create Description: Ensures the C++ object is created Use of this method is deprecated. Use _create instead Use this method to ensure the C++ object is created, for example to ensure that resources are allocated. Usually C++ objects are created on demand and not necessarily when the script object is created. |
destroy | Signature: void destroy Description: Explicitly destroys the object Use of this method is deprecated. Use _destroy instead Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access to this object will throw an exception. If the object is not owned by the script, this method will do nothing. |
destroyed? | Signature: [const] bool destroyed? Description: Returns a value indicating whether the object was already destroyed Use of this method is deprecated. Use _destroyed? instead This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter may happen, if the object is owned by a C++ object which got destroyed itself. |
dup | Signature: [const] new MacroExecutionContext ptr dup Description: Creates a copy of self Python specific notes: |
ignore_next_exception | Signature: [static] void ignore_next_exception Description: Ignores the next exception in the debugger The next exception thrown will be ignored in the debugger. That feature is useful when re-raising exceptions if those new exception shall not appear in the debugger. |
is_const_object? | Signature: [const] bool is_const_object? Description: Returns a value indicating whether the reference is a const reference Use of this method is deprecated. Use _is_const_object? instead This method returns true, if self is a const reference. In that case, only const methods may be called on self. |
new | Signature: [static] new MacroExecutionContext ptr new Description: Creates a new object of this class Python specific notes: |
remove_debugger_scope | Signature: [static] void remove_debugger_scope Description: Removes a debugger scope previously set with set_debugger_scope |
set_debugger_scope | Signature: [static] void set_debugger_scope (string filename) Description: Sets a debugger scope (file level which shall appear in the debugger) If a debugger scope is set, back traces will be produced starting from that scope. Setting a scope is useful for implementing DSL interpreters and giving a proper hint about the original location of an error. |